Строение клеточной стенки бактерий

Структура бактериальной клетки

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядерного аппарата, называемого нуклеоидом. Имеются другие структуры: мезосома, хроматофоры, тилакоиды, вакуоли, включения полисахаридов, жировые капельки, капсула (микрокапсула, слизь), жгутики, пили. Некоторые бактерии способны образовывать споры.
Структуру и морфологию бактерий изучают с помощью различных методов микроскопии: световой, фазово-контрастной, интерференционной, темнопольной, люминесцентной и электронной.

Обозначения:

1-гранулы поли-β-оксимасляной кислоты;
2-жировые капельки;
3-включения серы;
4-трубчатые тилакоиды;
5-пластинчатые тилакоиды;
6-пузырьки;
7-хроматофоры;
8-нуклеоид;
9-рибосомы;
10-цитоплазма;
11-клеточная стенка;
12-цитоплазматическая мембрана;
13-мезосома;
14-вакуоли;
15ламелярные структуры;
16гранулы полисахарида;
17гранулы полифосфата.

Клеточная стенка

В клеточной стенки грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40—90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка).
В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Липополисахарид наружной мембраны состоит из трех фрагментов: липида А – консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (лат. core — ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельнои О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (О-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима,
пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты — бактерии, полностью лишенные клеточной стенки; сферопласты – бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами.
Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.
Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактомазы) и компоненты транспортных систем.

Цитоплазматическая мембрана

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым – промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты — впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.

Цитоплазма

Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул — рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) – консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК – в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

Нуклеоид

Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности – плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь

Капсула – слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу – слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь – мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков – у грамположительных и 2 пары дисков – у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка – флагеллина (от flagellum – жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили (фимбрии, ворсинки) – нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны – несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры

Споры – своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium – веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное – ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.

бактерия микроорганизм ризосфера брожение

Важным и обязательным структурным элементом подавляющего большинства прокариотных клеток является клеточная стенка. Она располагается под капсулой или слизистым чехлом или же непосредственно контактирует с окружающей средой (у клеток, не содержащих этих слоев клеточной оболочки).

Клеточная стенка — один из главных элементов структуры бактериальной клетки, она обладает определенной ригидностью, т. е. жесткостью, и вместе с тем эластичностью — может изгибаться. Ее можно разрушить ультразвуком, ферментом лизоцимом и другими способами. В случае разрушения клеточной стенки содержание клетки — цитоплазма с включениями, окруженная цитоплазматической мембраной, — приобретает шаровидную форму.

Такую округлившуюся клетку, образовавшуюся после удаления клеточной стенки у бактерии, называют протопластом, а если оболочка разрушена не полностью — сферопластом. Отсюда следует, что стенка придает бактериальной клетке определенную форму.

Клеточная стенка имеет и другие функции. Она защищает внутреннее содержимое клетки от действия механических и осмотических сил внешней среды, ей принадлежит важная роль в регуляции роста и деления бактерий, распределении генетического материала.

На долю клеточной стенки приходится от 5 до 50 % сухих веществ клетки. Клеточная стенка служит механическим барьером между протопластом и внешней средой. Концентрация солей в клетке, как правило, намного выше, чем в окружающей среде, и поэтому между ними существует большое различие в осмотическом давлении. Клеточная стенка чисто механически защищает клетку от проникновения в нее избытка воды.

По строению и химическому составу клеточная стенка прокариот резко отличается от таковой эукариотных организмов. В ее состав входят специфические полимерные комплексы, которые не содержатся в других клеточных структурах. Химический состав и строение клеточной стенки постоянны для определенного вида и являются важным диагностическим признаком. В зависимости от строения клеточной стенки прокариоты делятся на две большие группы. Было обнаружено, что если фиксированные клетки бактерий обработать сначала кристаллическим фиолетовым, а затем йодом, образуется окрашенный комплекс. При последующей обработке спиртом в зависимости от строения клеточной стенки судьба комплекса различна: у так называемых грамположительных видов этот комплекс удерживается клеткой, и последние остаются окрашенными, у грамотрицательных видов, наоборот, окрашенный комплекс вымывается из клеток, и они обесцвечиваются (этот способ был впервые предложен в 1884 г. датским ученым X. Грамом (Ch.Gram), занимавшимся окрашиванием тканей. Позднее он был использован для бактерий).

У некоторых бактерий положительная реакция при окрашивании описанным способом свойственна только клеткам, находящимся в стадии активного роста. Выяснено, что окрашенный комплекс образуется на протопласте, но его удерживание клеткой или вымывание из нее при последующей обработке спиртом определяются особенностями строения клеточной стенки.

Компоненты клеточной стенки

внутренний слой (пептидогликановый)

внешний слой (наружная клеточная мембрана)

Обозначения «+» – присутствуют, «-» – отсутствуют, «+ – » – присутствуют, но не у всех видов

Клеточные стенки грамположительных и грамотрицательных прокариот резко различаются как по химическому составу (таблица 1), так и по ультраструктуре (рис. 1).

В состав клеточной стенки прокариот входят семь различных групп химических веществ, при этом пептидогликан (структурный полимер, являющийся основным опорным элементом клеточной стенки) присутствует только в клеточной стенке. У грамположительных бактерий он составляет основную массу вещества клеточной стенки (от 40 до 90 %), у грамотрицательных — содержание пептидогликана значительно меньше (1 –10 %). Клеточная стенка цианобактерий, сходная с таковой грамотрицательных бактерий, содержит от 20 до 50 % этого гетерополимера.

Под электронным микроскопом клеточная стенка грамположительных бактерий выглядит как гомогенный электронно-плотный слой, толщина которого колеблется для разных видов от 20 до 80 нм. У грамотрицательных бактерий обнаружена многослойная клеточная стенка. Внутренний электронно-плотный слой толщиной порядка 2–3 нм состоит из пептидогликана. Снаружи к нему прилегает, как правило, волнистый слой (8–10 нм), имеющий характерное строение: две электронно-плотные полосы, разделенные электронно-прозрачным промежутком. Такой вид характерен для элементарных мембран. Поэтому трехконтурный внешний компонент клеточной стенки грамотрицательных бактерий получил название наружной мембраны.

Рис. 1 Схема молекулярной организации стенки грамположительных (А) и грамотрицательных (Б и В): 1 – плазматическая мембрана с билипидным слоем и глобулярными белками; 2 – пептидогликаны; 3 – тейхоевые кислоты; 4 – белки; 5 – белковые глобулы; 6 – периплазматическое пространство; 7 – наружная мемебрана; 8 – липопротеины; 9 – белки наружной мембраны; 10- липополисахариды; 11 – углеводные остатки; 12 – липопротеиновые комплексы наружной мембраны.

Клеточная стенка грамположительных бактерий плотно прилегает к цитоплазматической мембране (ЦПМ) в отличие от клеточной стенки грамотрицательных видов, компоненты которой (пептидогликановый слой и наружная мембрана) разделены электронно-прозрачным промежутком и четко отделены аналогичным образом от ЦПМ. Пространство между цитоплазматической и наружной мембранами получило название периплазматического. Оно, как можно видеть из строения клеточных стенок обеих групп бактерий, характерно только для грамотрицательных форм (рис. 1).

Опорный скелет бактериальной стенки состоит из однородного полимера, обозначаемого как мукопептид, глюкозаминопептид, гликопептид, пептидогликана или муреин (лат. мurus – стенка). В настоящее время общеприняты два последних наименования.

Эта макромолекула – гетерополимер, построенный из цепочек, в которых чередуются остатки N-ацетилглюкозамина и N-ацетилмурамовой кислоты (N-ацетилглюкозаминлактата), соединенные между собой Я-1,4-гликозидными связями. Такие неразветвленные гетерополимерные цепи образуют основу муреина. Остатки мурамомвой кислоты через лактильные группы соединены пептидной связью с аминокислотами. К типичным аминокислотам муреина относятся L-аланин, D-глутаминовая кислота, мезо-диаминопимелиновая кислота или L-лизин и D-аланин. Диаминокислоты мезо- (или LL-) диаминопимелиновая кислота и L-лизин играют большую роль в межмолекулярных сшивках, так как образуют пептидные связи с участием обеих аминогрупп и, таким образом, могут связать две гетерополимерные цепи между собой (рис. 2). Место диаминопимелиновой кислоты или лизина могут занять орнитин или диаминомасляная кислота. Пептидными мостиками гетерополимерные цепи связаны между собой в мешкообразную гигантскую молекулу – муреиновый мешок.

Особого внимания заслуживает то, что в бактериальной стенке содержатся структуры и вещества, которых нет у животных и растений: таковы, например, чередующаяся последовательность N-ацетилглюкозамина и N-ацетилмурамовой кислоты; не встречающаяся в составе белков мезо-диаминопимелиновая кислота; D-формы аланина и глутаминовой кислоты. Эти структурные элементы составляют ахиллесову пяту бактерий, используемую врачами в борьбе с инфекцией. По компонентам и структуре клеточной стенки и биохимическим механизмам ее синтеза бактерии коренным образом отличаются от животных и растений. Поэтому лекарственные препараты, специфически воздействующие только на бактериальные стенки и на процесс их синтеза, должны быть безвредными для высших организмов.

Наличие в клеточных стенках пептидогликанового слоя характерная особенность всех прокариот. Исключение составляют только архебактерии и немногие другие группы и виды.

Рис. 2.Структура муреина Escherichia coli. Гетерополимерные цепочки, состоящие из чередующихся остатков N-ацетилглюкозамина (N-АцГлю) и N-ацетилмурамовой кислоты (N-АцМур), связаны между собой пептидными мостиками. Слева – детальное строение фрагмента, изображенного справа в рамке. Треукольниками отмечены связи , расщепляемые лизоциумом (мурамидазой) и специфической муроэндопептидазой. Справа внизу – схематическое перспективное изображение структуры однослойного поперечного муреинового мешка, состоящего из N-АцГлю (G) и N-АцМур (М). m-Dpm – мезо-диаминопимелиновая кислота.

Муреиновый мешок выполняет функцию опорного каркаса клеточной стенки. На нем откладываются и его инкрустируют различные другие вещества. По строению этого каркаса, а также по содержанию других веществ в клеточной стенке грамположительные бактерии отличаются от грамотрицательных.

Клеточная стенка грамположительных бактерий. У грамположительных бактерий доля муреиновой сетки составляет 30-70% сухой массы клеточной стенки (толщиной в 40 слоев). Вместо м-диаминопимелиновой кислоты часто содержатся LL-диаминопимелиновая кислота или лизин. У Staphylococcus aureus тетрапептидные боковые цепи мурамовой кислоты связаны между собой межпептидными (например, пентаглициновыми) цепочками. Участвующие в образовании таких структур аминокислоты варьируют от вида к виду. Видоспецифическое строение опорного каркаса представляет собой хороший таксономический признак. В клеточной стенке грамположительных бактерий полисахариды, если они вообще имеются, связаны между собой ковалентно. Содержание белков невелико. Характерная особенность – наличие тейхоевых кислот (рис. 3); это цепи, состоящие из 8-50 остатков глицерола или рибитола, связанных между собой фосфатными мостиками. Некоторые из тейхоевых кислот содержат эритритол или маннитол. Тейхоевые кислоты, вероятно, через фосфат связаны с муреином по типу амида.

Клеточная стенка грамотрицательных бактерий. У грамотрицательных бактерий муреиновая сеть однослойная (рис. 4) и составляет менее 10% сухой массы клеточной стенки (у Escherichia coli). Муреин содержит только мезодиаминопимелиновую кислоту и не содержит лизина; межпептидные мостики отсутствуют. Строение муреинового мешка у всех грамотрицательных бактерий одинаково.

У грамотрицательных бактерий строение клеточной стенки намного сложнее, чем у грамположительных (рис. 4). В ее состав входит гораздо большее число макромолекул разного химического типа. Пептидогликан образует только внутренний слой клеточной стенки, неплотно прилегая к ЦПМ. Для разных видов грамотрицательных бактерий содержание этого гетерополиме-ра колеблется в широких пределах. У большинства видов он образует одно- или двухслойную структуру, характеризующуюся весьма редкими поперечными связями между гетерополимерными цепями. Снаружи от пептидогликана располагается дополнительный слой клеточной стенки — наружная мембрана. Она состоит из фосфолипидов, типичных для элементарных мембран, белков, липопротеина и липополисахарида (рис. 4). Специфическим компонентом наружной мембраны является липополисахарид сложного молекулярного строения, занимающий около 30–40 % ее поверхности и локализованный во внешнем слое.

Белки наружной мембраны можно разделить на основные и минорные. Основные белки представлены небольшим числом различных видов, но составляют почти 80 % всех белков наружной мембраны. Одна из функций этих белков — формирование в мембране гидрофильных пор диаметром примерно 1 нм, через которые осуществляется неспецифическая диффузия молекул с массой до 600–900 Да (Да — дальтон, или единица атомной массы, равен 1,66033-1027 кг.). Это означает, что через такие поры могут проходить сахара, аминокислоты, небольшие олигосахариды и пептиды. Белки, пронизывающие наружную мембрану насквозь и образующие гидрофильные поры, называют поринами (рис. 4). Минорные белки наружной мембраны представлены гораздо большим числом видов. Их основная функция — транспортная и рецепторная. Примером минорных белков могут служить белки, ответственные за специфический транспорт в клетку железосодержащих соединений.

Рис. 3. Структура грамположительной клеточной стенки. ЦПМ – цитоплазматическая мембрана. ПГ – пептидогликан. ЛТК – липотейхоевые кислоты

Рис. 4. Структура грамотрицательной клеточной стенки. ВМ – внешняя мембрана (содержит фосфолипиды на внутренней поверхности и липополисахариды – на внешней).ПГ – пептидогликан. ЦПМ – цитоплазматичеукая мембрана. ЛПС – липополисахарид, состоит из липидной части, которая обращена внутрь внешней мембраны и формирует ее гидрофобную область, и полисахаридной части, которая обращена во внешнюю среду. ЛП -липопротеиды.

Помимо слоев клеточной стенки, типичных для большинства грамотрицательных бактерий, у некоторых представителей этой группы обнаружены дополнительные слои разной электронной плотности, располагающиеся с внешней стороны от наружной клеточной мембраны. Однако до настоящего времени не ясно, относятся ли они к клеточной стенке, являясь результатом ее последующего усложнения, или же представляют собой структурные элементы многослойного чехла.

Некоторые скользящие бактерии (миксобактерии, флексибактерии) способны в процессе перемещения по твердому субстрату периодически менять форму клеток, например путем изгибания, что говорит об эластичности их клеточной стенки и в первую очередь ее пептидогликанового слоя. Электронно-микроскопическое изучение, однако, обнаружило у них клеточную стенку, типичную для грамотрицательных бактерий. Наиболее вероятное объяснение гибкости клеточной стенки этих бактерий — чрезвычайно низкая сшитость ее пептидогликанового компонента.

Обнаружены прокариоты, клеточная стенка которых по структуре и химическому составу резко отличается от описанных выше типов. Они принадлежат к группе архебактерий. Клеточные стенки метанобразующих архебактерий содержат пептидогликан особого химического строения. У других представителей этой группы клеточная стенка состоит исключительно из кислого гетерополисахарида, а у некоторых экстремально галофильных, метанобразующих и ацидотермофильных архебактерий — только из белка. Архебактерии с клеточной стенкой белковой природы не окрашиваются по Граму, остальные типы архебактериальной клеточной стенки дают грамположительную реакцию.

При воздействии определенными химическими веществами оказалось возможным получать в лаборатории из разных видов бактерий формы с частично (сферопласты) или полностью (протопласты) отсутствующей клеточной стенкой. Существовать они могут только в условиях, когда осмотическое давление питательной среды сбалансировано с осмотическим давлением внутри клетки. В благоприятных условиях сферопласты и протопласты проявляют определенную метаболическую активность, но утрачивают способность к размножению. Прокариоты, не содержащие клеточной стенки, обнаружены и в природе. Это группа микоплазм, сапрофитов и внутриклеточных паразитов растений, животных и человека.

Значение окраски по Граму для диагностики микроорганизмов.

Тест Грама классифицирует микроорганизмы и позволяет провести разделение микроорганизмов, по критерию строения стенки клетки. Окраска по Граму позволяет отличить бактерии, чья толстая клеточная стенка практически полностью состоит из пептидогликана (грамположительные), от бактерий, чья клеточная стенка помимо тонкого слоя пептидогликана имеет наружную мембрану, состоящую из липопротеидов и липополисахаридов (грамотрицательных). Основный краситель (например, кристаллический фиолетовый) прочно фиксируется в стенке грамположительных бактерий, придавая им иссиня-черный цвет, и легко вымывается спиртом (или ацетоном) из стенки грамотрицательных бактерий, после чего они докрашиваются контрастным красителем (например, сафранином) в красный цвет.

Окраска по Грамму имеет большое значение в систематике бактерий, а также для микробиологической диагностики инфекционных заболеваний. Грамположительны кокковые и спороносные формы бактерий, а также дрожжей, они окрашиваются в иссиня-чёрный (тёмно-синий) цвет.

Грамотрицательны многие неспороносные бактерии, они окрашиваются в красный цвет, ядра клеток приобретают ярко-красный цвет, цитоплазма — розовый.

Так например, окраска по Граму незаменима при исследовании мазков мокроты. Если мокрота получена правильно, в ней обнаруживают не менее 25 нейтрофилов и менее 10 эпителиальных клеток в поле зрения при малом увеличении. Большее количество эпителиальных клеток и разнообразие типов бактерий свидетельствуют о том, что мокрота загрязнена содержимым ротоглотки. Хотя отличить нормальную микрофлору от патогенных бактерий нередко бывает трудно, окраска мазка по Граму дает ценную информацию, если патогенная бактерия имеет какой-либо доступный определению признак (биологический сигнал). Например, при бактериальном вагинозе в мазке из влагалища видны эпителиальные клетки, усеянные грамположительными бактериями.

Клеточная стенка является обязательным структурным элементом бактериальной клетки, исключение составляют микоплазмы и L-формы.

На долю клеточной стенки приходится от 5 до 50 % сухих веществ клетки.

По строению и химическому составу клеточная стенка прокариот отличается от таковой эукариотических организмов. Основным компонентом клеточной стенки большинства бактерий является муреин, относящийся к классу пептидогликанов. Муреин – гетерополимер, построенный из цепочек, в которых чередуются остатки N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединенные между собой β-1,4-гликозидными связями

Тест на внимательность Только 5% пользователей набирают 100 баллов. Сколько баллов наберешь ты?

Основу муреина составляют амк-аланин,D-глутаминовая кислота, мезо-диаминопимелиновая кислота

У некоторых бактерий вместо мезо-диаминопимелиновой кислоты встречаются L-лизин, либо 2,4-диаминомасляная кислота.

В зависимости от строения клеточной стенки бактерии делятся на две большие группы: грамположительные и грамотрицательные. Существует метод окраски, позволяющий разделить бактерии на эти две группы. Он был предложен в 1884 г. датским ученым Х. Грамом. Этот метод основан на различной способности микроорганизмов удерживать в клетке красители трифенилметанового ряда – кристаллический фиолетовый или генциановый фиолетовый, что в свою очередь зависит от химического состава и ультраструктуры клеточной стенки бактерий.

Клеточная стенка грамположительных бактерий под электронным микроскопом выглядит как гомогенный плотный слой, толстый, химически однородный, толщина которого колеблется для разных видов от 20 до 80 нм.

95% пептидогликан и 2,5% липиды, тейхоевые кислоты более 50% (полимеры глицерина и рибозы)

К грамположительным бактериям относятся следующие: Bacillus subtilis, Sarcina ventriculi, Streptococcus lactis, Staphylocoсcus aureus, Clostridium perfringens, Micrococcus luteus и др.

Клеточная стенка грамотрицательных бактерий многослойна, тонкая, толщина ее составляет 14–17 нм (рис. 13). Внутренний слой клеточной стенки представлен муреином, на долю которого приходится 1–10 % ее сухой массы

Внешний слой клеточной стенки (наружная или внешняя мембрана) образован фосфолипидами, липопротеинами и белками. По строению наружная мембрана имеет типичную организацию, характерную для элементарных мембран. Основной фракцией наружной мембраны являются липиды, составляющие в среднем 22 % сухой массы клеточной стенки. Наружная мембрана выполняет не только механические, но и физиологические функции. В ней находятся трансмембранные белки, которые насквозь пронизывают мембрану. Они представляют собой заполненные водой каналы или гидрофильные поры в липофильной мембране, их называют поринами. Существует несколько различных типов поринов, которые осуществляют транспорт через мембрану гидрофильных низкомолекулярных веществ.

Нет тейхоевых кислот.

Компоненты клеточной стенки у грамотрицательных бактерий разделены электронно-прозрачным слоем, а также четко отделены от цитоплазматической мембраны. Пространство между цитоплазматической и наружной мембраной получило название периплазматического. В периплазматическом пространстве находятся белки, такие как протеиназы, нуклеазы, периферические белки цитоплазматической мембраны, рестриктазы и, так называемые, связующие белки, которые участвуют в переносе некоторых субстратов в цитоплазму – пермеазы.

К грамотрицательным бактериям относятся Escherichia coli, Erwinia carotovora, Proteus vulgaris, Yersinia pestis, Pseudomonas aeruginosa

Ф-ции: защитный барьер, регидность (упругость), наружный не основной осмотический барьер

Клеточная стенка бактерий выполняет следующие функции:

• механическую защиту клетки от воздействий факторов окружающей среды;

• обеспечивает поддержание формы бактериальной клетки;

• дает возможность клетке существовать в гипотонических растворах;

• осуществляет транспорт веществ и ионов (характерно для грамотрицательных бактерий, имеющих наружную мембрану, которая является дополнительным барьером для их поступления; основным барьером служит цитоплазматическая мембрана);

• препятствует проникновению в клетку токсических веществ (также более характерно для грамотрицательных бактерий, имеющих наружную мембрану);

• на клеточной стенке находятся рецепторы, на которых адсорбируются бактериофаги и бактериоцины;

• в клеточной стенке находятся антигены (липополисахариды у грамотрицательных бактерий и тейховые кислоты у грамположительных бактерий);

• на клеточной стенке находятся рецепторы, ответственные за взаимодействие клеток донора и реципиента при конъюгации бактерий.

Вместе с тем следует отметить, что клеточная стенка не является жизненно важной структурой, так как в определенных условиях она может быть удалена и бактериальные клетки при этом существуют в виде протопластов или сферопластов.

Протопластами называют клетки округлой формы, полностью лишенные остатков клеточной стенки и окруженные только цитоплазматической мембраной. Их образование характерно чаще для грамположительных бактерий. Сферопласты отличаются от протопластов тем, что у них сохраняются остатки клеточной стенки, а образуются они преимущественно из клеток грамотрицательных бактерий.

Читайте также:  Белара показания к применению
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector